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Modeling opinion in social networks

I We model individuals as vertices on a marked directed graph
G = (V,E; A ).

I An edge from vertex i to vertex j, (i, j), is interpreted as:

“individual j listens to individual i”.

I Individuals hold opinions about a given topic.

I Opinions take values on the interval [−1, 1].

I There may be an external media that broadcasts a variety of opinions.

I At each time step t = 1, 2, . . . , each individual listens to the opinions of
all its inbound neighbors and those in the media, and then updates her
own opinion.

I Individuals weigh the opinions they listen to in a personalized way, and
may also control what media they listen to.
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Model parameters: vertex attributes

I Let (c(i, 1), c(i, 2), . . . c(i, n)) ≥ 0 be the vector of weights for her
neighbors’ opinions; c(i, k) ≡ 0 if (k, i) /∈ E and c(i, i) ≡ 0.

I Weights are assumed to satisfy:

n∑
j=1

c(i, j) = c ≤ 1 if d−i =

n∑
j=1

1(j → i) > 0.

I Individuals have an internal opinion qi ∈ [−1, 1].

I The internal opinion remains static throughout the process, and may
influence its dynamics.

I We call a vertex i with d−i = 0 a stubborn agent.
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Model parameters: vertex attributes

I Each vertex i ∈ V in the graph has a mark xi.

I Vertex marks usually include their in-degree and out-degree, but they can
also include many other vertex attributes.

I In our model, marks include:
I Internal opinion

I Community label

I Amount of trust given to each inbound neighbor

I Vertex marks are assumed to take values on a Polish space S.

I We equip S with a metric ρ.
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Model parameters: external media

I Let W
(t)
i denote the external media signal received by individual i at time

t, t = 0, 1, 2, . . . .

I The media signals {W (t)
i : t ≥ 0} are i.i.d. given xi and the

{W (t)
i : i ∈ V, t ≥ 0} are conditionally independent given {xi : i ∈ V }.

I Media signals satisfy

|W (t)
i | ≤ d+ c−

n∑
j=1

c(i, j),

for some d ∈ (0, 1).

I Let ν(xi) denote the distribution of W
(0)
i .

I Let R
(t)
i denote the opinion of individual i at time t.

I Extension: multiple topics make {R(t)
i ,W

(t)
i } vectors.
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The Friedkin-Johnsen model

I The Friedkin-Johnsen (’90) model is widely used in the social sciences
for modeling opinions.

I All individuals in the graph G = (V,E; A ) update their opinions
simultaneously at step t+ 1 according to the recursion:

R
(t+1)
i =

n∑
j=1

c(i, j)R
(t)
j +W

(t)
i + (1− c− d)R

(t)
i , i ∈ V.

I Special cases:
I d−i ≥ 1 for all i ∈ V −→ no stubborn agents

I c+ d = 1 −→ no memory

I {W (t)
i : t ≥ 0} independent of xi −→ pure noise

I {W (t)
i : t ≥ 0} ∼ ν(xi) −→ media signal that depends on individual’s

attributes
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Matrix representation for the Friedkin-Johnsen model

I Explicit computation gives that if we let W(t) = (W
(t)
1 , . . . ,W

(t)
n )′, then

R(t) =

t−1∑
k=0

k∑
s=0

as,kC
sW(t−k) +

t∑
s=0

as,tC
sR(0)

for some matrix C ∈ Rn×n and coefficients {as,k}.
I The matrix C = (c(i, j)) contains the weights each vertex assigns to its

neighbors.
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Goals for the model

I We want a model for the evolution of opinions on a social network that
can predict complex behavior.

I The type of graphs covered in the analysis should be able to model
real-world social networks.

I We want to model phenomena known as confirmation bias and selective
exposure.

I The model should exhibit polarization under strong biases.

I Goal: explain when consensus is possible and quantify the potential of
various depolarizing interventions.
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The DeGroot model

I The DeGroot (’75) model does not include external media.

I Individuals update their opinion, synchronously or asynchronously, based
only on their neighbors’ opinions according to the recursion:

R
(t+1)
i =

n∑
j=1

c(i, j)R
(t)
j + (1− c)R(t)

i , i ∈ V

I Provided the matrix of weights C = (c(i, j)) is irreducible and aperiodic,
this model is known to achieve consensus, since

R(t+1) = CR(t) = Ct+1R(0),

so by the Perron-Frobenius theorem,

Ct → Π, t→∞

where Π is a stochastic matrix with all its rows equal to each other.
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Markov chain on a fixed graph

I The opinion model

R
(t+1)
i =

n∑
j=1

c(i, j)R
(t)
j +W

(t)
i + (1− c− d)R

(t)
i , i ∈ V,

on a marked directed graph G = (V,E; A ) defines a Markov chain on
R|V |.

I Let R(t) = (R
(t)
1 , . . . , R

(t)
|V |).

I Theorem: (Fraiman-Lin-OC ’22) Suppose G is locally finite and d > 0.
Then, there exists a random vector R such that

R(t) ⇒ R, t→∞.
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Typical behavior

I Let R = (R1, . . . , R|V |) be the vector of stationary opinions.

I Goal: describe the distribution of RI , where I is uniformly chosen in V .

I RI represents the typical opinion of an individual in the network.

I The distribution of RI also describes the proportion of individuals in the
graph G having opinions in A ⊆ [−1, 1], i.e.,

P (RI ∈ A|G) =
1

|V |
∑
i∈V

1(Ri ∈ A).

I In small graphs the distribution of R will greatly depend on G.

I On large graphs, only the statistical properties of the graph matter.
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Modeling large graphs using random graph theory

I So far, we have thought of the graph G representing the social network as
fixed.

I Idea: think of G as a realization from some random graph model.

I Question: can we find a random graph model that could have produced
the specific graph G?

I Answer: depends on how many properties of G we need to model....

I “First order” properties:
I Degree distribution(s) (scale free property)
I Connectivity
I Typical distances (small world phenomenon)
I Community structure
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Random graph models

I “First order” properties are easy to model.

I Models that describe a “snapshot” of a graph are called static.

I Models that describe the evolution of a graph as it grows are called
dynamic.

I Static models that can model first order properties include:
I Erdős-Rényi model

I Chung-Lu or expected given degree model

I Norros-Reittu or Poissonian random graph

I Generalized random graph

I Configuration model

I Stochastic block model

I Dynamic models include the Albert-Barabási or preferential attachment
model and its generalizations.

I Our focus from now on will be on static models.
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Opinion dynamics on random graphs

I From now on, assume {Gn : n ≥ 1} is a sequence of marked directed
random graphs Gn = (Vn, En; An).

I Assume the graphs are sparse (i.e., the expected degrees are bounded).

I Note: Results are also available for semi-sparse and dense graphs.

I Suppose {Gn : n ≥ 1} converges in the local weak sense to a marked
Galton-Watson tree (single or multi-type).

I We will consider the case d > 0 first.
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Opinion model on random graphs

I We start by realizing the graph Gn = (Vn, En; An).

I Assume it has K communities (e.g., Gn is a dSBM).

I To construct the weights for the opinion of the neighbors, for each edge
(j, i) ∈ En we sample

Bij ∼ GJi,Jj

where Gr,s, r, s ∈ {1, . . . ,K} is a distribution on [0, H] for some constant
H, independently of everything else.

I We construct the weights according to:

C(i, j) =
cBij1(j → i)∑n
r=1Bir1(r → i)

,

if D−i =
∑n

j=1 1(j → i) > 0, and C(i, j) ≡ 0 otherwise.
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Local tree-like behavior

I Consider a directed random graph Gn = (Vn, En; An) from any of the
models mentioned earlier.

I Choose In uniformly in Vn and explore its in-component.
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Local weak limit of locally tree-like random graphs

I Local weak limits characterize the local neighborhood of vertices.

I Unsurprisingly, for locally tree-like random (directed) graphs, the local
weak limit is a (marked) branching process.

I For the dSBM with K communities the local weak limit is a K-type
marked Galton-Watson tree.

I The directed configuration model and the rank-1 degree corrected dSBM
have a single-type marked Galton-Watson tree as their local weak limit.
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Back to the opinion model

I Recall ν(x) denotes the conditional distribution of W
(0)
i given that its

vertex mark is Xi = x.

I Suppose d > 0 and

d1(ν(x), ν(x̃)) ≤ Kρ(x, x̃),

for some K <∞, and d1 the Wasserstein metric of order 1.

I Note: d > 0 ensures that the map defining the recursion

R
(t+1)
i =

n∑
j=1

C(i, j)R
(t)
j +W

(t)
i + (1− c− d)R

(t)
i , i ∈ V,

is strictly contracting, making R
(t)
i a local function of vertex i.
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Sparse approximation

I For each i ∈ Vn and each t ≥ 1, let T (t)
i (X ) denote the coupled depth-t

marked branching tree rooted at vertex i and having the distribution of
the local weak limit of Gn = (Vn, En; An).

I Note: It is possible to couple all n graph explorations with their local
weak limits simultaneously.

I For each i ∈ Vn and each k ≥ 1 let R(t)
∅(i) denote the opinion at time t of

the root ∅(i) of T (t)
i (X ), computed according to our model.

I The vector R(t) = (R(t)
∅(1), . . . ,R

(t)
∅(n))

′ does NOT have independent
components.

I Note: For semi-sparse and dense graphs the corresponding opinion vector
has independent components.
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Sparse approximation... cont.

I Theorem: (Lin-OC ’23-’25) For θn a constant and any fixed t ≥ 1,

lim
n→∞

max
0≤r≤t

1

n

n∑
i=1

En

[∣∣∣R(t)
i −R

(t)
∅(i)

∣∣∣] = 0,

and for any bounded and continuous function f : Rt+1 → R,

1

n

n∑
i=1

f(R
(0)
i , . . . , R

(t)
i )

P−→ E
[
f(R(0)

∅ , . . . ,R(t)
∅ )
]
, n→∞.

Moreover, if R = (R1, . . . , Rn)′ is distributed according to the stationary
distribution of {R(t) : t ≥ 0}, then, for any continuous and bounded
function f : R→ R,

1

n

n∑
i=1

f(Ri)
P−→ E [f(R∅)] , n→∞.
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Commuting diagram

I Let In denote a uniformly chosen vertex in Gn = (Vn, En; An).

I The theorem shows the following commuting diagram.

R(t)
∅

R
(t)
In

-

-

R∅

RIn

? ?

n→∞ n→∞

t→∞

t→∞
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Remarks

I When the local weak limit is a K-type marked Galton-Watson process,
the random variables

Y(j) D= (R∅|J∅ = j),

where J∅ ∈ {1, . . . ,K} is the community label of the root ∅, satisfy a
system of distributional fixed-point equations.

I These equations allow us to compute

E[Y(j)] and Var(Y(j))

for each j ∈ {1, . . . ,K}.
I Explicit formulas for conditional means and conditional variances in terms

of only the limiting vertex marks are available.

I Observation: these are enough to characterize consensus and
polarization, as well as to study the effects of cognitive biases.
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The DeGroot model

I The DeGroot model does not define a strict contraction.

I The process {R(t) : t ≥ 0} has a limiting distribution that depends on the
initial opinion vector R(0).

I Consider the synchronous model.

I Idea: Perturb the model to obtain a strict contraction, i.e., approximate

R(t+1) = CR(t)

with
R̃(t+1) = (1− d)CR̃(t) + d1

for some d ∈ (0, 1).

I Choose d = d(n) and t = t(n) so that

(1− d)t → 1, n→∞
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Locality for the DeGroot model

I Let R̃(t)
∅ denote the value of the opinion of the root node in T (t)(X ), the

local weak limit of {Gn : n ≥ 1}, of the perturbed process.

I Let R(t)
∅ denote the value of the opinion of the root node in T (t)(X ) of

the original (unperturbed) process.

I Argue that

R
(t)
In
≈ R̃(t)

In
≈ R̃(t)

∅ ≈ R
(t)
∅

I Finally, analyze the distribution of limt→∞R(t)
∅ .

I Theorem: (OC-Yu ’25) The synchronous DeGroot model attains
consensus as t→∞. Moreover, the value of the consensus is fully
determined by T (X ) and the distribution of R(0).
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Thank you for your attention.
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