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Modeling opinion in social networks

>

>

vV v. vy

We model individuals as vertices on a marked directed graph
G=(V,E; ).

An edge from vertex i to vertex j, (i,7), is interpreted as:
“individual j listens to individual 7".
Individuals hold opinions about a given topic.
Opinions take values on the interval [-1,1].
There may be an external media that broadcasts a variety of opinions.

At each time step t = 1,2, ..., each individual listens to the opinions of
all its inbound neighbors and those in the media, and then updates her
own opinion.

Individuals weigh the opinions they listen to in a personalized way, and
may also control what media they listen to.
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Model parameters: vertex attributes

Let (c(i,1),¢(4,2),...¢(i,n)) > 0 be the vector of weights for her
neighbors’ opinions; ¢(i,k) = 0 if (k,i) ¢ E and c(i,i) = 0.

Weights are assumed to satisfy:

ci,j)=c<1 ifd; =) 1(j =) >0.
1 j=1

J

n n

» Individuals have an internal opinion ¢; € [-1,1].

The internal opinion remains static throughout the process, and may
influence its dynamics.

We call a vertex ¢ with d;” = 0 a stubborn agent.
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Model parameters: vertex attributes

» Each vertex i € V in the graph has a mark x;.

» Vertex marks usually include their in-degree and out-degree, but they can
also include many other vertex attributes.

» |n our model, marks include:
» Internal opinion
> Community label
» Amount of trust given to each inbound neighbor

» Vertex marks are assumed to take values on a Polish space S.

» We equip S with a metric p.
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Model parameters: external media
> Let Wi(t) denote the external media signal received by individual ¢ at time
t,t=0,1,2,....

» The media signals {Wi(t) :t > 0} are i.i.d. given x; and the
{Wi(t) :1 € V,t > 0} are conditionally independent given {x; : i € V'}.
» Media signals satisfy

n

W <d+c— > eli, ),

j=1
for some d € (0,1).

> Let v(x;) denote the distribution of WZ-(O)

> Let R(»t) denote the opinion of individual i at time ¢.

» Extension: multiple topics make {R(t W( } vectors.
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The Friedkin-Johnsen model

» The Friedkin-Johnsen ('90) model is widely used in the social sciences
for modeling opinions.

» All individuals in the graph G = (V, E; o) update their opinions
simultaneously at step ¢t + 1 according to the recursion:

R =S"ci, )R + WP + (1 —c-dRP,  ieV.
j=1

» Special cases:
» d. >1forall i € V — no stubborn agents
» ¢+d=1— no memory
> {Wi(t) :t > 0} independent of x; — pure noise
> {Wi(t) 1t > 0} ~ v(x;) — media signal that depends on individual’s
attributes

Interacting Particles Systems: Analysis, Control, Learning and Computation, Seminar on Stochastic Processes Opinion dynamics on complex networks 6/25



Matrix representation for the Friedkin-Johnsen model

» Explicit computation gives that if we let W(*) = (Wl(t), ceey W,(Lt))’, then

k

t)_zza LO°W (t k) +Za CsR(O)
k=0 s=0
for some matrix C' € R™*™ and coefficients {as x}.

» The matrix C' = (¢(i,7)) contains the weights each vertex assigns to its
neighbors.
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Goals for the model

» We want a model for the evolution of opinions on a social network that
can predict complex behavior.

» The type of graphs covered in the analysis should be able to model
real-world social networks.

» We want to model phenomena known as confirmation bias and selective
exposure.

» The model should exhibit polarization under strong biases.

Goal: explain when consensus is possible and quantify the potential of
various depolarizing interventions.
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The DeGroot model

» The DeGroot ('75) model does not include external media.

» Individuals update their opinion, synchronously or asynchronously, based
only on their neighbors’ opinions according to the recursion:

Rgtﬂ Zc i,7) R(t +(1— c)REt), eV
Jj=1

» Provided the matrix of weights C' = (c(i, j)) is irreducible and aperiodic,
this model is known to achieve consensus, since

R(t+1) CR(t Ct+1R(O),
so by the Perron-Frobenius theorem,
Ct - 11, t — 0o

where II is a stochastic matrix with all its rows equal to each other.
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Markov chain on a fixed graph

» The opinion model

n

RIHY = Z RV 4w+ (1-c—a)R", eV,

on a marked directed graph G = (V, E; o) defines a Markov chain on
RIVI.

> Let RO = (RY,..., R).

» Theorem: (Fraiman-Lln-OC '22) Suppose G is locally finite and d > 0.
Then, there exists a random vector R such that

R® = R, t — 0.
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Typical behavior

vV v. vy

Let R = (R1,..., Rjy|) be the vector of stationary opinions.
Goal: describe the distribution of R;, where I is uniformly chosen in V.
R represents the typical opinion of an individual in the network.

The distribution of R; also describes the proportion of individuals in the
graph G having opinions in A C [—1,1], i.e

P(R; € A|G) = IVIZ (R; € A).

eV

» In small graphs the distribution of R will greatly depend on G.

» On large graphs, only the statistical properties of the graph matter.
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Modeling large graphs using random graph theory

» So far, we have thought of the graph G representing the social network as
fixed.
» Idea: think of G as a realization from some random graph model.

» Question: can we find a random graph model that could have produced
the specific graph G?
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Modeling large graphs using random graph theory

» So far, we have thought of the graph G representing the social network as
fixed.

» Idea: think of G as a realization from some random graph model.

» Question: can we find a random graph model that could have produced
the specific graph G?
» Answer: depends on how many properties of G we need to model....
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Modeling large graphs using random graph theory

» So far, we have thought of the graph G representing the social network as
fixed.

» Idea: think of G as a realization from some random graph model.

» Question: can we find a random graph model that could have produced
the specific graph G?

» Answer: depends on how many properties of G we need to model....

» “First order” properties:

» Degree distribution(s) (scale free property)
» Connectivity

» Typical distances (small world phenomenon)
» Community structure
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Random graph models

» “First order” properties are easy to model.

» Models that describe a “snapshot” of a graph are called static.

» Models that describe the evolution of a graph as it grows are called
dynamic.

» Static models that can model first order properties include:

>
>
>
>
>

>

» Dynamic models include the Albert-Barabasi or preferential attachment

Erdés-Rényi model

Chung-Lu or expected given degree model
Norros-Reittu or Poissonian random graph
Generalized random graph

Configuration model

Stochastic block model

model and its generalizations.

» Qur focus from now on will be on static models.
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Opinion dynamics on random graphs

» From now on, assume {G,, : n > 1} is a sequence of marked directed
random graphs G,, = (V,,, En; 9,,).

> Assume the graphs are sparse (i.e., the expected degrees are bounded).
» Note: Results are also available for semi-sparse and dense graphs.

» Suppose {G,, : n > 1} converges in the local weak sense to a marked
Galton-Watson tree (single or multi-type).

» We will consider the case d > 0 first.
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Opinion model on random graphs

» \We start by realizing the graph G,, = (V,,, Ey; %,).
Assume it has K communities (e.g., G,, is a dSBM).

» To construct the weights for the opinion of the neighbors, for each edge
(4,4) € E,, we sample

v

Bij ~ Gy,
where G, 5, r,s € {1,..., K} is a distribution on [0, H] for some constant
H, independently of everything else.
» We construct the weights according to:

.. CBi‘l(j — Z)
C(i,j) = !
(27]) Z:,L:l Bi7-1(T % Z),

if D7 =>"_1(j = i) >0, and C(i,5) = 0 otherwise.

Jj=1

Interacting Particles Systems: Analysis, Control, Learning and Computation, Seminar on Stochastic Processes Opinion dynamics on complex networks 15/25



Local tree-like behavior

» Consider a directed random graph G,, = (V,,, Ey,; <,) from any of the
models mentioned earlier.

» Choose I,, uniformly in V,, and explore its in-component.
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Local weak limit of locally tree-like random graphs

» Local weak limits characterize the local neighborhood of vertices.

» Unsurprisingly, for locally tree-like random (directed) graphs, the local
weak limit is a (marked) branching process.

» For the dSBM with K communities the local weak limit is a K-type
marked Galton-Watson tree.

» The directed configuration model and the rank-1 degree corrected dSBM
have a single-type marked Galton-Watson tree as their local weak limit.
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Back to the opinion model

» Recall v(x) denotes the conditional distribution of Wi(o) given that its
vertex mark is X; = x.

» Suppose d > 0 and
di(v(x),v(x)) < Kp(x,%),

for some K < oo, and d; the Wasserstein metric of order 1.
» Note: d > 0 ensures that the map defining the recursion

n
RV =3"Cli, )RV + W + (1-c-d)R", eV,
Jj=1

is strictly contracting, making Rl(t) a local function of vertex i.

;
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Sparse approximation

» For each i€V, and each t > 1, let ﬁ(t)(X) denote the coupled depth-t
marked branching tree rooted at vertex ¢ and having the distribution of
the local weak limit of G, = (V,,, En; 9,).

» Note: It is possible to couple all n graph explorations with their local
weak limits simultaneously.

» For each i€V, and each k > 1 let Ré)t()l) denote the opinion at time t of

the root (() of 7;(t)(X), computed according to our model.

» The vector RY = (’R((at()l), e ’,R’((Dt()n))/ does NOT have independent
components.

» Note: For semi-sparse and dense graphs the corresponding opinion vector
has independent components.
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Sparse approximation... cont.

» Theorem: (Lin-OC '23-'25) For 6,, a constant and any fixed t > 1,

| =0,

and for any bounded and continuous function f : R**! — R,

(®) (t)
lim max —ZE HR R(Z)(z)

n—oo 0<r<t n

1
=~ IR RO B B fRY RO 0o

Moreover, if R = (R1,..., R,) is distributed according to the stationary
distribution of {R(t) :t > 0}, then, for any continuous and bounded
function f: R — R,

1 < P
=3 f(R:) > E[f(R)], n— o0

n-
=1
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Commuting diagram

» Let I, denote a uniformly chosen vertex in G,, = (V,,, E,,; o).

» The theorem shows the following commuting diagram.

Ry Ry,
n — 0o n — 0o
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Remarks

» When the local weak limit is a K-type marked Galton-Watson process,
the random variables

YD Z(Ry| Ty = ),

where Jy € {1,..., K} is the community label of the root 0, satisfy a
system of distributional fixed-point equations.

» These equations allow us to compute
E[YY]  and  Var(YW)

for each j € {1,..., K}.

» Explicit formulas for conditional means and conditional variances in terms
of only the limiting vertex marks are available.

» Observation: these are enough to characterize consensus and
polarization, as well as to study the effects of cognitive biases.

Interacting Particles Systems: Analysis, Control, Learning and Computation, Seminar on Stochastic Processes Opinion dynamics on complex networks 22/25



The DeGroot model

» The DeGroot model does not define a strict contraction.

» The process {R(t) :t > 0} has a limiting distribution that depends on the
initial opinion vector R(©).

» Consider the synchronous model.

» |dea: Perturb the model to obtain a strict contraction, i.e., approximate
RO — oR®

with _ _
RO = (1 — d)CR® + d1

for some d € (0,1).
» Choose d = d(n) and t = t(n) so that

(1—d)' —1, n — 0o
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Locality for the DeGroot model

> Let 7%((;) denote the value of the opinion of the root node in 7(®)(X), the
local weak limit of {G,, : n > 1}, of the perturbed process.

> Let R denote the value of the opinion of the root node in 7®)(X) of
the original (unperturbed) process.

» Argue that
Rgi) ~ Rgtn) ~ 7@&” ~ Rét)

» Finally, analyze the distribution of lim;_, Rét).

» Theorem: (OC-Yu '25) The synchronous DeGroot model attains
consensus as t — oco. Moreover, the value of the consensus is fully
determined by 7(X) and the distribution of R(?).
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Thank you for your attention.
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