

Imanol Nuñez

imanol.nunez@cimat.mx

Seminar on Stochastic Processes

Centro de Investigación en Matemáticas, A.C.

March 2025

(Multitype) A-Coalescents and **Branching Processes**

arxiv:2501.00329

joint work with A. González-Casanova, N. Kurt & J.L. Pérez

- The study of genealogies in population models is done often through coalescent processes.
- A-coalescents generalize Kingman's coalescent by allowing multiple lineages to merge
- Branching processes model population growth dynamics over time.
- Goal: Explore a link between Λ-coalescents and continuous-state branching processes in the multitype case.

One-type case

- Λ-coalescents: Exchangeable, consistent coalescent processes with specific merging rates.
- CSBPs: Scaling limits of Galton-Watson processes.
- Prior work (v.g. Bertoin & Le Gall, 2006; Birkner et al., 2005) showed links between these two objects.
- Main Theorem (Caballero et al., 2024): Homeomorphism between the space of Λ-coalescents and the space of CSBPs.

Multitype case

- Multitype Λ-coalescent: Exchangeable, consistent multitype coalescent with no simultaneous mutations (Johnston et al., 2023).
- Main Theorem (González Casanova, Kurt, N., Pérez, 2025+): Homeomorphism between multitype Λ-coalescents and multitype CSBPs, describing an explicit mapping.

- Our result provides a link between Johnston et al.'s multitype Λ-coalescent and multitype CSBPs.
- Open questions include: extensions to models with simultaneous mutations.

