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Stochastic gradient descent 2

§ Many supervised learning problems can be framed as the empirical
risk minimization (ERM) problem

min
θPRd

#

pF pθ,Xnq :“
1

n

n
ÿ

i“1

fpθ, xiq

+

.

Xn “ tx1, . . . , xnu Ă Xn is a dataset with i.i.d. observations.

§ A popular algorithm to solve the above problem is stochastic gradient
descent (SGD)

θk`1 “ θk ´ η∇F̃ pθk, Xnq. (1)

Here ∇F̃ pθ,Xnq :“ 1
b

ř

iPΩk,|Ωk|“b ∇fpθ, xiq, with Ωk being a random

subset of t1, . . . , nu; and |Ωk| “ b ! n is mini-batch size.

§ The stochastic part of (1) comes from the noise

Uk`1 :“ η
´

∇F̃ pθk, Xnq ´ ∇ pF pθk, Xnq

¯

. (2)

§ The standard assumption is that Uk`1 is Gaussian (Welling & Teh
2011).
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§ Simsekli et al. (2019), Zhang et al. (2020): over large iterates of SGD,
the noise term Uk`1 has heavy tails (sup-exponential or polynomial).

§ Panigrahi et al. (2019), Gurbuzbalaban et al. (2021): smaller batch
size and larger step size of SGD are associated with heavier tails.

§ Martin & Mahoney (2019), Simsekli et al. (2020), Raj et al. (2020):
heaviness of the tails is positively correlated with generalization
performance of SGD (aka how well SGD works on unseen data).

§ Simsekli and co-authors (2017, 2020) propose modeling the noise Uk`1

in SGD as α-stable distribution to simulate heavy tails ñ Fractional
Langevin Monte Carlo (LMC).

We will consider the continuous proxy of fractional LMC with momentum.

dθt “ vtdt, dvt “ ´γvtdt ´ β∇ pF pθt, Xnqdt ` ζdLt.

γ ą 0 is the momentum parameter. Lt, t ě 0 is an α-stable Lévy process
with stability parameter α P p1, 2q. Xn is the dataset.
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Define R̂px,Xnq :“ 1
n

řn
i“1 ℓpx, xiq and Rpxq :“ EX„Drℓpx,Xqs, where D is

the unknown probability distribution over the data space X . The expected
generalization error is

Epθt,vtq,Xn

”

R̂ppθt, vtq, Xnq ´ Rppθt, vtqq

ı

.

Theorem
Assume appropriate assumptions on F̂ and supx,yPX ∥x ´ y∥ ď D. Then
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Other contributions:

§ for quadratic losses: generalization bound of SGDm is larger than that
of SGD ñ momentum`heavy tails can be bad for generalization
(confirmed by synthetic experiment and experiment on neural
networks).

§ generalization bound of the discretization

Vk`1 “ Vk ´ ηγVk ´ η∇ pF pΘk, Xnq ` ζξk`1, Θk`1 “ Θk ` ηVk`1.


