Multiple Extremal Integrals

Jiemiao Chen

Joint work with Shuyang (Ray) Bai

<ロト<部ト<差ト<差ト 差 のQで 1/4

Introduction

Recall multiple Wiener-Itô integral (Wiener N 1938, Itô K 1951):

$$\int_{E^k} f(t_1, t_2, \ldots, t_k) dW(t_1) dW(t_2) \ldots dW(t_k).$$
(1)

where, f vanishes on diagonals, and W is a Brownian random measure.

Here, changing W to other additive random measures, such as Poisson, α -stable, fractional Brownian random measures and so on, gives rise to different types of multiple stochastic integrals.

 J Chen, S Bai (2025) extend the single extremal integrals, which was introduced by L De Haan (1987), S Stoev, MS Taqqu (2005) to multiple extremal integrals. A k-fold extremal integral is in the form of

$$I_k^e(f) := \int_{E^k}^e f(s_1, s_2, \dots, s_k) M_\alpha(ds_1) M_\alpha(ds_2) \dots M_\alpha(ds_k)$$
(2)

where M_{α} is a α -Fréchet random sup measure.

Multiple Extremal Integrals

Let (E, \mathcal{E}, μ) be a measure space. M_{α} is a α -Fréchet random sup measure satisfying the following conditions:

- (independently scattered) For any collection of disjoint sets $A_j \in \mathcal{E}, 1 \le j \le n$, $n \in Z_+$, the random variables $M_{\alpha}(A_j), 1 \le j \le n$, are independent.
- (α -Fréchet marginal) For any $A \in \mathcal{E}$,

$$\mathbb{P}\left\{M_{\alpha}(A) \leq x\right\} = \exp\left\{-\mu(A)x^{-\alpha}\right\} \text{ for } x \in (0,\infty).$$

• (σ -maxitive) For any collection of sets $A_j \in \mathcal{E}, j \in \mathbb{Z}_+$, we have that

$$M_{lpha}\left(igcup_{j\geq 1} A_{i}
ight) = \max_{j\geq 1} M_{lpha}\left(A_{j}
ight)$$
 almost surely

Examples:

Single extremal integral: Let $f = 2\mathbf{1}_A + 5\mathbf{1}_B$ with $A, B \in \mathcal{E}$ disjoint, then

$$I_1^e(f) = \int_E^e f(u) M_\alpha(du) := \max\{2M_\alpha(A), 5M_\alpha(B)\}$$

Multiple extremal integral: Set f = 21_{A1×A2} + 51_{B1×B2} with A₁, A₂, B₁, B₂ ∈ E disjoint, then the double integral of f is

$$I_2^e(f) = \int_{E^2}^e f(u,s) M_\alpha(du) M_\alpha(ds) := \max\{2M_\alpha(A_1)M_\alpha(A_2), 5M_\alpha(B_1)M_\alpha(B_2)\}.$$

When does the extremal integral $I_k^e(f)$ exist?

▶ $I_k^e(f)$ for a general $f : E^k \mapsto [0, \infty]$ vanishing on the diagonals can be defined by simple function approximation.

Theorem

(Sufficient condition for integrability) Suppose (E, \mathcal{E}, μ) is a probability measure space. A sufficient condition for $I_k^e(f) < \infty$ a.s is the following: When k = 2, we need

$$\int_{E^2} f(s,t)^{\alpha} \left(1 + \ln_+ \frac{f(s,t)}{\left(\int_E f(s,u)^{\alpha} \mu(du)\right)^{1/\alpha} \left(\int_E f(u,t)^{\alpha} \mu(du)\right)^{1/\alpha}} \right) \, \mu(ds) \mu(dt) < \infty.$$

When $k \geq 3$, we need

$$\int_{E^k} f^{\alpha}(\boldsymbol{u}) \left(1 + (\ln_+ f(\boldsymbol{u}))^{k-1} \right) \mu^k(d\boldsymbol{u}) < \infty.$$

Remark

The idea of its proof is related to the theory of multiple α -stable integrals (Kwapień and Woyczyński 1987, Samorodnitsky and Szulga 1989).

Theorem

A necessary condition for $I_k^e(f) < \infty$ is $\int_{E^k} f^{\alpha}(\boldsymbol{u}) \mu^k(d\boldsymbol{u}) < \infty$.

Welcome to my poster for more properties of $I_k^e(f)$!