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if B is a fractional Brownian motion (fBm) with Hurst parameter H € (0, 1), or
if B is a general Gaussian process?
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e Let y be the solution of the additive SDE:
dy: = b(y)dt + o(t)dB;,  yo=aecR’,

where B is a fBm with Hurst parameter H € (0, 1).
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given that the drift coefficient b is one-sided Lipschitz (Hu-L.-Zhou ’22).

Question: What is the rate of convergence of the Euler scheme when
H<1/2?
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given that the drift coefficient b is one-sided Lipschitz (Hu-L.-Zhou ’22).

Question: What is the rate of convergence of the Euler scheme when
H < 1/2? What if B is replaced by a general Gaussian process?
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e These problems can be reduced to the study of a mix of weighted sum in
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On the other hand, the addition of the two sums converges to a non-zero limit
at the rate O(1/n)#NH+1/2),
e Theorem (L. 24): We have J(y, h) ~ O(1/n)"*'/2 and

n"t127(y,h) — [ yidW; as n — oo, where W is a Brownian motion
independent of X.



