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• Let W be a standard Brownian motion and P : 0 = t0 < t1 < · · · < tn = T
be a partition of the interval [0,T ].

• Consider the convergence of the Riemann sum:

n−1∑
k=0

f (Wtk ) · (tk+1 − tk ) →
∫ T

0
f (Wt)dt as n → ∞.

• It can be shown that

n−1∑
k=0

f (Wtk ) · (tk+1 − tk )−
∫ T

0
f (Wt)dt ∼ O(|P|).

• Question: What is the order for:

n−1∑
k=0

f (Btk ) · (tk+1 − tk )−
∫ T

0
f (Bt)dt

if B is a fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1), or
if B is a general Gaussian process?
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• Let y be the solution of the additive SDE:

dyt = b(yt)dt + σ(t)dBt , y0 = a ∈ Rd ,

where B is a fBm with Hurst parameter H ∈ (0, 1).

• Consider the Euler scheme:

yn
tk+1 = yn

tk + b(yn
tk )(tk+1 − tk ) + σ(tk )(Btk+1 − Btk ).

• It is known that when H ≥ 1/2 we have

sup
tk

|ytk − yn
tk | ∼ O(|P|) as n → ∞,

given that the drift coefficient b is one-sided Lipschitz (Hu-L.-Zhou ’22).

Question: What is the rate of convergence of the Euler scheme when
H < 1/2? What if B is replaced by a general Gaussian process?
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• These problems can be reduced to the study of a mix of weighted sum in
the following form:

n−1∑
k=0

(ytk hn,1
k + y ′

tk hn,2
k + · · ·+ y (ℓ−1)

tk
hn,ℓ

k ) := J (y , h).

where hn,i
k is a functional of some underlying Gaussian process X and y is a

process “controlled” by X (e.g. yt = f (Xt)).

• A main issue arises from the cancellations among the weighted sums.

• It can be shown that when X is a fBm with Hurst parameter H < 1/2 we
have the following orders:

n−1∑
k=0

ytk hn,1
k ∼ O(1/n)2H and

n−1∑
k=0

y ′
tk hn,2

k ∼ O(1/n)2H .

On the other hand, the addition of the two sums converges to a non-zero limit
at the rate O(1/n)(4H)∧(H+1/2).

• Theorem (L. ’24): We have J (y , h) ∼ O(1/n)H+1/2, and
nH+1/2J (y , h) →

∫ T
0 ytdWt as n → ∞, where W is a Brownian motion

independent of X .
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