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Introduction

▶ We wish to study the equation(
∂t −

1
2 △

)
u(t, x) =u(t, x) · W, t > 0, x ∈ M, (1)

u(0, x) =µ

A solution is a random field { u(t, x) }t>0,x∈M where M
is a compact Riemannian manifold and µ is a finite
measure. We seek to answer the following two
questions.

1. What regularity requirements on W is reasonable for (1)
to be well-posed?

2. Do the moments of u grow exponentially in time?
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Colored Noise and Well-Posedness

▶ We construct an intrinsic family of Gaussian noises
{Wα }α≥0 where α is a regularity parameter.

▶ α = 0 would be space-time white noise, which is
well-known to not admit random field solutions in
dimension d ≥ 2.

Theorem (C-Ouyang ’25+)
(1) is has a unique solution for α > d−2

2 if M has
non-positive sectional curvature.

▶ α > d−2
2 is optimal and expected from the Rd literature.

▶ The non-positive curvature condition is used for its
global geometry implications. We do not know if
α > d−2

2 will be the optimal if we remove it.
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Behavior of Moments

Definition (Carmona-Molchanov’94)
For p ≥ 2, define Lp(x) := limt↑+∞

1
t lnE[|u(t, x)|p]. A

solution u(t, x) of (1) is intermittent if
▶ For all p ≥ 2, supx∈M Lp(x) < +∞.
▶ infx∈M L2(x) > 0.

Theorem (C-Ouyang ’25+)
If µ is a positive finite measure, u solving (1) on a compact
manifold is intermittent by the above definition.

▶ The upper bound follows naturally from the proof of
existence and uniqueness.

▶ The lower bound is new and uses the ergodicity of
Brownian motion on compact manifolds.


